
HTML AND CSS

L A B G U I D E

SWATI MEHTA

a how-to guide

Suggested Citation: Swati Mehta, HTML and CSS: A How-to Guide,”

Guide. Experimental Methods and Media Lab. Trent University,

Peterborough, Ontario. August 2024.

TABLE OF CONTENTS

PREFACE ...6

PART I: HTML

HTML: LANGUAGE OF THE WORLDWIDE WEB8

WHY SHOULD WE KNOW HOW TO USE HTML?9

HOW DO WE USE HTML? ...13

TECH REQUIREMENTS ... 13

GETTING STARTED ... 14

PART II: CSS

WHAT IS CSS? ..34

HOW TO USE CSS? ...35

STYLING A PAGE .. 36

PART III: HELLO WORLD!

GOING LIVE! ...61

TROUBLESHOOTING ...63

PART IV: RESOURCES

TUTORIAL WEBSITE ..65

TECH RESOURCES ..66

HTML TUTORIALS ..67

CSS TUTORIALS ...68

6

PREFACE

This guide will introduce you to the world of HTML and CSS. It will teach you how to read, write, and

comprehend HTML and CSS, with examples along the way. If you follow these examples, by the end of this guide

you will have designed a static website. In the process, this guide will also help you think about code, software and

other technical things that are concealed from our day-to-day interactions with technology. These thoughts will

hopefully lead to more thinking about art, methods, and how we go about studying and doing things in our very

media saturated environments.

The guide is designed for all levels of expertise. This is to say, you can use this if this is the first time you’ve heard of

HTML and CSS, have a rough idea and would like to know more, need a refresher, are an absolute expert, or just

curious about what’s going on here. You only need a laptop or desktop computer, basic typing skills, and a text

editor like notepad or WordPad (available on every computer for free!) to get started.

The guide also has a list of resources: tutorials, videos, zines, to help you further develop HTML and CSS skills. This

list is in no way exhaustive or definitive. For everything that’s listed here, there’s a gazillion more just a search or

prompt away. This guide just nudges you in the right direction, so you know what to look for, check if it is accurate,

know how to fix it, and make it work for your own requirements.

Let’s get started!

PART I: HTML

8

HTML: LANGUAGE OF THE WORLDWIDE WEB

HTML is an abbreviation for Hypertext Markup Language1. It is a language that allows us to view and share

websites on the Internet. No matter how sophisticated a website is, it still uses HTML. Hypertext refers to a system

of linking documents so they can be shared easily across a network of computers. Markup language provides

structure for linking these pages and documents2. In other words, HTML describes the structure of a website and

uses a wide variety of elements to display content on these pages across web browsers. We’ll see how structure and

elements work together in HTML when we go through the process of creating a website.

The first version of HTML (i.e., HTML 1) was created by Sir Tim Berners Lee, a physicist at CERN in Switzerland,

in 1991, two years after he created the worldwide web in 19893. However, this version of HTML was not officially

released until 1995 when it was published as HTML 2.04. HTML-5 was the fifth and final version of HTML

released by the World Wide Web Consortium (W3C) in 2008. The current version is known as the HTML living

standard and is managed by a consortium of major web browsers i.e., Apple, Google, Microsoft, and Mozilla,

known as the Web Hypertext Application Technology Working Group (WHATWG)5.

1 A Simple Guide to HTML: https://www.simplehtmlguide.com/whatishtml.php

2 HTML Introduction: https://www.w3schools.com/html/html_intro.asp

3 Raggett, D., Lam, J., Alexander, I., & Kmiec, M. (1998). A history of HTML. In Raggett on HTML 4. Addison-Wesley Longman Publishing Co., Inc.

4 HTML History: https://www.w3schools.in/html/history

5 W3C and WHATWG to work together to advance the open Web platform: https://www.w3.org/blog/2019/w3c-and-whatwg-to-work-together-to-advance-the-open-
web-platform/

https://www.simplehtmlguide.com/whatishtml.php
https://www.w3schools.com/html/html_intro.asp
History:https://www.w3schools.in/html/history
https://www.w3.org/blog/2019/w3c-and-whatwg-to-work-together-to-advance-the-open-web-platform/

9

WHY SHOULD WE KNOW HOW TO USE HTML?

Developing websites is extremely easy and often requires minimum knowledge of HTML. Most webhosting

platforms, like WordPress, Squarespace, or Wix, have integrated HTML, CSS and a variety of plug-ins into

templates and drag-and-drop boxes to create user friendly web development interface. As a result, users like us are

less likely to interact directly with HTML when setting up a website. Moreover, generative AI applications like

ChatGPT can easily generate near perfect HTML and CSS for more customized options.

When making a website is so easy, why should we take on the extra work of familiarizing ourselves with HTML?

For the same reasons we learn any language. Knowing a language allows us to communicate, comprehend, and

create in that language. It is like being added to an inner circle, where suddenly everything starts making more

sense than it used to before we became fluent in that language. The ability to read, write, and understand HTML

even at a basic level is an entry to the inner circle of the world wide web. An awareness of the structure and

elements that create a page can reveal why a website looks and works the way it does.

On a functional level, familiarity with HTML can help you maintain your website without having to run to ‘techie’

to fix a broken link. Even if you do outsource the task to a web developer, you’ll be able to communicate better if

you understand how websites work. Though most proprietary webhosting services limit access to the source code,

they still allow users to switch between visual and html editors. This means that you’ll know exactly where to look

when something does not work on the default design template. Most importantly, you will know how to fix it. You

could easily ask a generative AI application to write an almost perfect HTML script for you and copy-paste it. The

knowledge of HTML, however, will help you evaluate the output, test the AI’s capability, and find its limitations.

That’s the advantage of knowing a language.

Image 1: Even though we can simply drag-and-drop elements to easily develop a
website, there’s HTML behind the scenes. Here’s a quick way to check: Open your
favorite website in any browser. Right click on the page and select ‘inspect element’ from
the menu that opens. A dialog box will open at the bottom of the screen. Can you spot
any HTML elements?

11

It can be difficult to resist the allure of convenience offered by third-party platforms. They are quick and offer all

kinds of attractive design templates for websites. All these conveniences come at a cost. Access to templates,

plugins or even the ability to customize templates is blocked behind steep subscription plans. Pricing is always

subject to change. It can be tough to pack-up and leave if your website already has a dedicated user base. Even if a

website is migrated to a different host, the expenses do not go away. Self-coding and hosting a website, in contrast,

is cheaper than third party platforms. There is also the significant advantage of owning the source-code. It comes

with the convenience of customizing almost every aspect of a website with minimal spending on subscriptions.

Though most proprietary web-hosting platforms make claims of being ethical and sustainable, verifying these

claims is often difficult and almost impossible. What we do know is that data-centers power these platforms, and

their energy consumption is far removed from being sustainable6. This, along with data sharing, privacy, and

advertising models used by tech companies creates a paradox of (un)ethical choices for responsible use of

technology. Self-hosting provides opportunities to address these challenges. It gives you space to experiment with

sustainable alternatives such as using local, decentralized servers or solar powered servers. It also affords more

control over the type and amount of data you wish to collect and how do you use it. Self-coding and hosting,

therefore open up several possibilities to experiment with alternatives that could in-turn aid attempts to re-

imagine and reconstruct existing formations on how we communicate on the internet.

Apart from gaining tech literacy, learning HTML also provides an awareness of how socio-technical systems work.

As researchers, we are often looking to unearth and discover relationships and meanings of different subjects and

6 Pasek, A. (2023). Getting Into Fights With Data Centers: Or, a Modest Proposal for Reframing the Climate Politics of ICT. White Paper. Experimental Methods and Media
Lab, Trent University, Peterborough, Ontario. https://emmlab.info/Resources_page/Data%20Center%20Fights_digital.pdf

https://emmlab.info/Resources_page/Data%20Center%20Fights_digital.pdf

12

objects in society. This often requires a close reading of texts to understand the conditions that created the text in

question. The tricky thing about software is that it obfuscates. In other words, we can never really see or learn all

the software that is involved in the functioning of technology because it is hidden to create seamless user

experience7. Moreover, AI with all its promise of efficiency will further reduce access to these layers of technology

and software that mediate our experience. As our social interactions are increasingly being mediated through

layers of software, we need the ability to read a language or code that configures these systems.

A small peek into these heavily concealed technical systems can give us some sense of how these systems are

entangled with our social realities. Knowing any software, a programming language, or a markup language like

HTML affords us these visions. Learning HTML is therefore an excellent starting point to understand not just the

world wide web but also logics used by coding languages.

7 Fuller, M. (2003). Behind the blip: Software as culture. New York: Autonomedia.

13

HOW DO WE USE HTML?

TECH REQUIREMENTS

1. Laptop or desktop computer (any operating system)

2. A .txt editor. Most commonly used operating systems (OS) have a default text editor application. It is

Notepad on Windows OS, TextEdit on Mac, vi/vim on Linux, and Gedit on Ubuntu.

3. To host the website online, you’ll need an account on a webhosting service. We are using Neocities

(https://neocities.org/) in this tutorial but you are welcome to use any similar service for your purpose.

It is also possible to set-up your own self-hosting server. The Solar-Powered Media zine8 is an excellent

guide for setting up a solar-powered server using a simple raspberry pi.

8 Pasek, A, and Benedetta P. (2021). Solar-Powered Media. h t t p : / / l o w c a r b o n m e t h o d s . c o m / l o c a l / z i n e . h t m l

https://neocities.org/
https://.http://lowcarbonmethods.com/local/zine.html

14

GETTING STARTED

Like any language, HTML has its set of rules, such as syntax, grammar, and vocabulary, which when used correctly

yield a legible webpage. The logic of HTML is simple: there are elements and tags that define categories and

content. Different kinds of content tags can be nested under elements. For HTML to work, these elements and tags

need to be arranged in a logical order, following all the rules of the language.

Think of it as ordering a sandwich at Subway. To get a sandwich made successfully you need to provide

instructions in a very specific order. First, the type of bread and its size defines the structure of your sandwich.

This is typically followed by instructions for your preference for cheese and having the selected bread toasted.

Once the bread is toasted (or not depending on your preference), you proceed to select the ingredients of your

sandwich. Finally, you select the sauce. Anyone who has tried getting a sandwich at Subway, knows that messing

up with the sequence of your order is not an entirely pleasant experience. To produce a sandwich without

minimum disruption, one must follow the rules of ordering it set by the sandwich maker.

The logic of HTML is not very different, except that it produces a website instead of a sandwich at the end of the

process. A fault in the logic can break a website or just frustrate the user by not producing the desired outcome.

This is also to say that HTML is as simple as ordering a sandwich. The first attempt can be daunting but once you

understand its logic it serves you well.

Let’s begin!

1. Create a folder

The first step is to set up a folder which will act as a home for your HTML page and images. This folder, known as

the root folder, defines a ‘path’ for the website i.e., it tells the HTML where to get images or styles sheets.

15

So go ahead, create a folder on the desktop or any other drive on your computer/laptop that is easily accessible.

2. Create a .html file

Now that we have a folder, we can go ahead and create a .html file and save it in the root folder. The file

extension .html designates the document as a webpage. In other words, it tells a browser that this is a

webpage.

• Open the default .txt editor and a new blank file.

• Then click on “save as” and make sure you select the folder we just created as the location for this

file.

• Name the file: ‘index.html’ save it and close the file (for now).

• Go back to the home folder and check if you’ve saved the file correctly.

• If you see the default web browser icon next to the ‘index.html’ file, you’ve got it right.

• Now double click to open the ‘index.html’ file. It should open as a tab in your default web browser.

Congratulations! You have created a webpage. It’s blank, but it exists!

Let’s cross-check a couple of things before we go further and fill out this page.

• Check the URL of the page: it should consist of the name of your folder followed by the name of the page.

• The page name ‘index.html’ is the default home page of your website.

It is important to note that though this page opens in a web browser, it is not in fact online yet. The .html file is

locally hosted on your computer and this link only works on the system you are working on. To be online, this

16

page needs to be hosted on a web server. We’ll get to that once your page has some content and is ready to say

hello! to the world.

3. Page structure

Let’s create a structure for this page.

• Go back to the root folder and right click on the ‘index.html’ page.

• Hover over the ‘open with’ option and select the txt editor. Windows users will get an option to

‘edit in Notepad’ in the main menu after they right click. You can select that instead of the ‘open

with’ option.

• Your index.html file should now be open as a txt file.

The first instruction we enter on this page is:

<!DOCTYPE html>

This informs the web server that this document is an html file.

Once you’ve typed this, press enter to get to the next line. Here, we tell the server that the html begins from this

point onwards. To do this we use the tag:

<html>

Now everything that follows under this tag will be read as html for this page till we close the tag. This tag will be

closed at the end as we want all our html elements nested under this tag.

18

Once again, press enter and move to the next line after you’ve typed the <html> tag.

Next, we will define elements that contain details about this webpage. This information is known as ‘meta

information’ or ‘metadata’. The information we enter here is not visible to the end user but is used by browsers to

render the page correctly. To define this information, we use the <head> tag:

<head>

We will define some parameters for browsers under this tag.

First, we define the character set i.e., an element that instructs the browsers to read universal fonts and characters

on the website.

Next, we instruct browsers on how to size the webpage for different screen sizes and devices.

Then, we give the browsers information that should show up on search engine pages. This is the descriptive text a

user will see on a search engine’s result page.

Finally, we define the title of the website, i.e. , the name of the page that an end user should see in the address bar

and the browser tab.

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<meta name="description" content="A short description of your webpage. It
should not be longer than a sentence or two.">

<title> HTML_Guide </title>

19

Let’s close the <head> tag for now. We’ll come back to it when it is time to add some CSS.

</head>

4. Content

Now that we’ve defined all the meta information, we can start adding content to the page. These parts will be

visible to the end user.

First, we define the body with the<body> element.All the elements introduced under this tag will form the main

body of the webpage.

i. Let’s add a header to this page using the<header> tag and a heading using predefined heading levels in

HTML.

<body>

<header>

<h1> HELLO WORLD!</h1>

</header>

We’ll add a basic site navigation later. For now, we can move on to adding more content to the website. Save the

file.

ii. Let’s add some content to the page!

First, we’ll define a new section with the<section> element. Next, we add a heading for the section using

a predefined heading level in HTML. Then we can add some paragraphs using the<p> tag.

<section>

20

<h1> Welcome to HTML </h1>

<p>This guide will introduce you to the world of HTML. It will teach you how
to read, write, and comprehend HTML. In the process, it will also help you
think about code, software and other technical things that are concealed from
our day-to-day interactions with technical interfaces. These thoughts will
hopefully lead to more thinking about art, methods, and how we go about
studying and doing things in our very media saturated environments. At the
end of this guide, you will have designed a static web page.</p>

iii. Let’s add an image using the tag.

First, make sure the image file you want to use is saved in your root folder. Copy the image file name along

with the extension i.e., “img_name.png” (or .jpg depending on the image you have saved).

Before adding the image, we define a container for this image using the<div> tag. Everything added

under the<div> container is considered a single unit. This makes it easier to apply different styles to these

elements.

<section>

<h1> Welcome to HTML </h1>

<p>This guide will introduce you to the world of HTML. It will teach you how
to read, write, and comprehend HTML. In the process, it will also help you
think about code, software and other technical things that are concealed from
our day-to-day interactions with technical interfaces. These thoughts will
hopefully lead to more thinking about art, methods, and how we go about
studying and doing things in our very media saturated environments. At the
end of this guide, you will have designed a static web page.</p>

<div>

</div>

iv. Let’s add external links with the<a> tag.

Source: https://www.simplehtmlguide.com/cheatsheet.php

https://www.simplehtmlguide.com/cheatsheet.php

Source: https://www.simplehtmlguide.com/cheatsheet.php

https://www.simplehtmlguide.com/cheatsheet.php

23

<section>

<h1> Welcome to HTML </h1>

<p>This guide will introduce you to the world of HTML. It will teach you how
to read, write, and comprehend HTML. In the process, it will also help you
think about code, software and other technical things that are concealed from
our day-to-day interactions with technical interfaces. These thoughts will
hopefully lead to more thinking about art, methods, and how we go about
studying and doing things in our very media saturated environments. At the
end of this guide, you will have designed a static web page.

</p>

<div>

</div>

<p> The guide is designed to help all levels of expertise. This is to say,
you can use this if this is the first time you have heard of HTML, have a
rough idea and would like to know more, need a refresher, are an absolute
expert, or just curious about what’s going on here. You only need a laptop or
desktop computer, basic typing skills, and a text editor like notepad or
WordPad (available on every computer for free!) to get started.

The guide also has a long list of resources: <a href=
"https://www.w3schools.com/html/default.asp">tutorials, videos, zines, to
help you further develop these newly acquired HTML skills. This list is in no
way exhaustive or definitive. For everything that is listed here, there’s a
gazillion more just a search or prompt away. This guide just nudges you in
the right direction, so you know what to look for, check if it is accurate,
know how to fix it, and make it work for your own requirements.

Let us get started!</p>

v. Let’s make a list.

There are specific tags for adding lists in HTML. The element tag is used for creating unordered lists.

These are typically rendered as bullet points. The element tag is used for ordered lists. These are

rendered as numbered list. Theelement underordefines the list item. Let’s add an

unordered list to see how this works.

<section>

<h1> Welcome to HTML </h1>

<p>This guide will introduce you to the world of HTML. It will teach you how
to read, write, and comprehend HTML. In the process, it will also help you
think about code, software and other technical things that are concealed from
our day-to-day interactions with technical interfaces. These thoughts will

24

hopefully lead to more thinking about art, methods, and how we go about
studying and doing things in our very media saturated environments. At the
end of this guide, you will have designed a static web page.</p>

<div>

</div>

<p> The guide is designed to help all levels of expertise. This is to say,
you can use this if this is the first time you have heard of HTML, have a
rough idea and would like to know more, need a refresher, are an absolute
expert, or just curious about what’s going on here. You only need a laptop or
desktop computer, basic typing skills, and a text editor like notepad or
WordPad (available on every computer for free!) to get started.

The guide also has a long list of resources: <a href=
"https://www.w3schools.com/html/default.asp">tutorials, videos, zines, to
help you further develop these newly acquired HTML skills. This list is in no
way exhaustive or definitive. For everything that is listed here, there’s a
gazillion more just a search or prompt away. This guide just nudges you in
the right direction, so you know what to look for, check if it is accurate,
know how to fix it, and make it work for your own requirements.

Let us get started!</p>

<h2> Tech requirements</h2>

Laptop or desktop computer (any operating system)

A .txt editor. Most commonly used operating systems (OS) have a default
text editor application.

It is Notepad on Windows OS, TextEdit on Mac, vi/vim on Linux, and Gedit on
Ubuntu.

Laptop or desktop computer (any operating system)

To host the webpage online, you will need an account on a webhosting
service.

</section>

You can reuse the section element to define additional sections on your page. Make sure you close the tag before

you begin a new section.

25

vi. Let’s add a footer. A page is incomplete without a footer. We can add a footer at the end of the page using a

<footer> tag.

<footer>

<h3>How to Guide: HTML</h3>

<p>2024 Experimental Methods and Media Lab</p>

</footer>

The page is complete! We can now close the<body>and<html> tags we opened at the beginning of the page. Save

the file and refresh your browser to see changes.

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<meta name="description" content="A short description of your webpage. It
should not be longer than a sentence or two.">

<title> How_to_Guide </title>

</head>

<body>

<header>

<h1> HELLO WORLD!
</h1>

</header>

<section>

<h1> Welcome to HTML </h1>

<p>This guide will introduce you to the world of HTML. It will teach you how
to read, write, and comprehend HTML. In the process, it will also help you
think about code, software and other technical things that are concealed from
our day-to-day interactions with technical interfaces. These thoughts will
hopefully lead to more thinking about art, methods, and how we go about
studying and doing things in our very media saturated environments. At the
end of this guide, you will have designed a static web page.

</p>

26

<div>

</div>

<p> The guide is designed to help all levels of expertise. This is to say,
you can use this if this is the first time you have heard of HTML, have a
rough idea and would like to know more, need a refresher, are an absolute
expert, or just curious about what’s going on here. You only need a laptop or
desktop computer, basic typing skills, and a text editor like notepad or
WordPad (available on every computer for free!) to get started.

The guide also has a long list of resources: <a href=
"https://www.w3schools.com/html/default.asp">tutorials, videos, zines, to
help you further develop these newly acquired HTML skills. This list is in no
way exhaustive or definitive. For everything that is listed here, there’s a
gazillion more just a search or prompt away. This guide just nudges you in
the right direction, so you know what to look for, check if it is accurate,
know how to fix it, and make it work for your own requirements.

Let us get started!</p>

<h2> Tech requirements</h2>

Laptop or desktop computer (any operating system)

A .txt editor. Most commonly used operating systems (OS) have a default
text editor application.

It is Notepad on Windows OS, TextEdit on Mac, vi/vim on Linux, and Gedit on
Ubuntu.

Laptop or desktop computer (any operating system)

To host the webpage online, you will need an account on a webhosting
service.

</section>

<footer>

<h3>How to Guide: HTML</h3>

<p>2024 Experimental Methods and Media Lab</p>

</footer>

</body>

</html>

Image 3: Final HTML webpage

28

5. Adding more pages

Adding more pages to a website is easy once the index.html page is ready. Let’s add an About page to this website to

see how it’s done.

First, we’ll add a navigation to our index.html page. For this, we’ll go back to the<header> element and add the

navigation element <nav> before the heading tag. Then we’ll use,<a> tags to create a menu for the

website.

Note that most coding programs automatically intend each line of code. This is done to aid clarity, especially when

there are many nested elements. However, it is not necessary to use indentation. Formatting the HTML script has

no impact on the final webpage. Web browsers will only read styling and formatting preferences applied through

CSS.

<body>

<header>

<nav>

HOME

ABOUT

</nav>

<h1> HELLO WORLD! </h1>

</header>

Save changes. Now refresh the browser to check if the changes are visible on your webpage.

Image 4: Webpage with navigation

Image 5: Screenshot of the About page

31

The combination of the tag and <a> tag gives us a list of menu items that are linked to the specific html pages

within the website. The home page is linked to the ‘index.html’ page and the ‘About’ page is linked to the

‘About.html’ page, which is what we create next.

Select and copy all the HTML on ‘index.html’ and paste it into a new .txt file.

Save the new file as ‘About.html’ in the root folder (where you’ve saved your index.html file).

Now change the content between html elements to add information relevant to the about us page.

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<meta name="description" content="A short description of your webpage. It
should not be longer than a sentence or two.">

<title> HTML_Guide </title>

</head>

<body>

<header>

<nav>

HOME

ABOUT

</nav>

<h1> About Us</h1>

</header>

<section>

<h1> Why Learn HTML? </h1>

<p>Familiarity with HTML can help you maintain your website without having to
run to ‘techie’ to fix a broken link. Even if you do outsource the task to a

32

how to fix it.</p>

</section>

<footer>

<h3>How to Guide: HTML</h3>

<p>2024 Experimental Methods and Media Lab</p>

</footer>

</body>

</html>

Save all your changes and close the file. Open the page in a web browser.

Click on ‘Home’ in the menu bar. This should take you to the home page.

Once on the home page, click ‘About’ in the menu. This should take you back to the About us page.

If everything works, you have successfully created a website! You can add more pages by copy-pasting the HTML

into new .html files and editing content on the new pages. Remember to update the navigation on all the pages

as you create new pages.

With HTML done, we can now look at styling the pages with CSS.

PART II: CSS

34

WHAT IS CSS?

As we can see from what we have created so far in this tutorial, plain HTML is, well, plain. It simply makes content

legible on a page. The stylistic presentation of this content is accomplished through Cascading Style Sheets (CSS).

CSS is a language used to define style sheets for markup languages such as HTML. The word cascading implies that

when a style is defined for a parent HTML element, it is automatically applied to all the elements nested under the

element9.

Background colors, fonts, layout text alignment, and other such elements that make a website look complete are

defined through CSS. Every website is a combination of HTML and CSS and more, depending on its features and

complexity. This makes CSS indispensable to web development. The separation of content and formatting also

makes it possible to customize the website for different devices and screens. With the help of specific CSS

functions a website can be made responsive, i.e., usable on mobile devices like tablets and phones, and accessible

through screen-readers and tactile devices.

9 What is CSS: https://www.simplehtmlguide.com/whatiscss.php

:https://www.simplehtmlguide.com/whatiscss.php

35

HOW TO USE CSS?

There are three ways to add CSS to a website.

• First, defining the style alongside HTML elements by setting a style attribute within the tag. This is

known as inline CSS. The style in this case only applies to the tag to which it has been added. For example,

<h1 style="color:white;"> Title </h1>

will only change the color of the content within this <h1>to white.

• Second, using the<style>tag within the<head>tag inHTML. We’ll use this approach for styling our

website. The CSS in this case applies to the entire page. For example,

<head>

<style>

h1{

color: white;

}

</style>

</head>

will change the color of all the<h1> tags on the page to white.

• Third, linking an external CSS file to the HTML file. CSS files, like HTML, can be created as plain text files

using a .css extension. The external CSS file can be linked to the HTML file using a<link…> tag under the

<head> tag.

For example:

<head>

<link rel="stylesheet" href="style.css">

</head>

36

will apply the style sheet defined in the style.css document to the entire website.

A basic style sheet can be used to define style for html tags like<body>or<h1> . In this case, styles for the<body>

tag will apply to everything under that tag. To style different parts of the body, CSS can be applied to the different

Components such as the<header>or<footer>tags and the elements nested under them. We’ll use this approach

when styling our pages.

As you’ll see, CSS follows a slightly different syntax; however, it shares some conventions with HTML such as the

logic of opening and closing tags. CSS commands are included within these { } parenthesis. The CSS will not work as

expected if the closing } is missing. The CSS property being defined is followed by a colon (:)and each line of CSS

ends with a semi-colon (;). Missing these or using them incorrectly will also break the CSS. Most coding programs

will alert you to such errors while you write your CSS, but it’s always good to look out for them as you progress,

especially if you are using notepad or similar applications.

STYLING A PAGE

Open the index.html txt file.

In the page structure, add the element tag<style>under the element<head> . Now everything under the<style>tag

is read as CSS instructions for the website by the browsers.

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<meta name="description" content="A short description of your webpage. It
should not be longer than a sentence or two.">

37

<title> HTML_Guide </title>

<style>

i. Define the border and size for the entire page.

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<meta name="description" content="A short description of your webpage. It
should not be longer than a sentence or two.">

<title> Page Name </title>

<style>

*{

padding: 0;

margin: 0;

box-sizing:"border-box";

}

The CSS defined here sets the padding, border, and margin for the entire page. These elements make up the ‘box

model’, which refers to design and layout in CSS. In this model, every HTML element is wrapped by a box.

The CSS attribute ‘padding’ is the first box that wraps around the content. This attribute is transparent and is used

to clear the area around the content. Padding is applied at the top, right, bottom, and left of the content. Different

values can be set for each side of the box.

‘Border’ is the next box and it goes around padding. This is not a transparent attribute, which means that its

thickness and color can be defined in CSS and will be visible on the website.

Image 6: Box model of CSS.

Source: Charles Calvert, CC BY-SA 4.0, via Wikimedia Commons

39

‘Margin’ forms the final and outer most layer in the box model. It is also a transparent attribute and is used to clear

the area around the border. Like padding, different values can be set for each side of the margin in CSS.

The ‘box-sizing: border-box’; property in CSS is used to ensure that padding and border are part of an element’s

total width and page. This ensures that the element has a uniform size.

We have used all these CSS properties to make sure our entire webpage has no extra space around it in the form of

padding or margins and this is included in the total length and width of the page. Now all content on this page w i l l

be uniformly aligned and ready to be styled individually.

ii. Define the style for<body> :

body {

background: black;

font-size: 22px;

line-height: 32px;

color: white;

margin: 0;

padding: 0;

word-wrap: break-word !important;

font-family: sans-serif;

}

Here, we have defined CSS properties for the ‘body’ element. The styles defined here will apply to all elements

under the <body> tag, unless we define different styles for each of these elements. The background, font-size, line-

height, and color properties set the default values for each of these properties. The ‘Word-wrap: break-word’

property is used to automatically break and wrap long words on the next line.

40

The ‘font-family’ property is used to specify the font for the element. This property uses specific font-family

names such as ‘arial’ or ‘Helvetica’ as well as a generic-family names such as serif and sans-serif. While either can

be used to define the font style in CSS, specific font-family names should be followed by a generic name so that

web browsers can select a similar font from the generic family if the font specified in the CSS is unavailable. Each

of these values should be separated by a comma in the CSS.

E.g.,

body {
font-family: "Times New Roman", Times, serif;
}

iii. Style the header:

header {

background: white;

padding-bottom: 20px;

}

HTML elements such as headings<h1> or paragraphs<p> are used in different parts of the body of a page. If we

use these tags as our primary CSS category, then all<p> or<h1> elements on the website will have the same style.

This may not be ideal if we want to style each section differently. To style elements nested under specific elements,

we need to specify that the style being defined should only be applied to elements under a specific category.

For example, to style elements within the<header>we begin the CSS command with the parent element category

i.e., “header” followed by the specific nested elements that need to be styled. Then we specify the style.

Source: https://www.simplehtmlguide.com/cheatsheet.php

https://www.simplehtmlguide.com/cheatsheet.php

42

iv. Let’s style the elements within the header:

header nav {

display: inline;

background: transparent;

background-size: cover;

background-position: center;

text-align: center;

padding-top: 5px;

padding-bottom: 10px;

}

header nav ul {

display: inline-flex;

list-style: none;

color: black;

font-weight: bold;

text-align: center;

}

header nav ul li {

width: 100px;

margin: 10px;

padding: 5px;

text-align: center;

}

43

header nav ul li a {

text-decoration: underline;

color: black;

display: inline-block;

padding: 5px;

}

header h1 {

font-size: 100px;

font-weight: bold;

text-align: center;

line-height: 32px;

color: black;

padding-bottom:75px;

padding-top: 50px;

}

The ‘display’ property in CSS is used to define how the box element, i.e., the content, is treated on the page. It

determines whether a box is an inline element, a block, or a flexible box. The values selected for this property

determine the layout for the elements nested under the element being styled.

44

v. Style the main content section of the website and elements under it:

section {

display: inline-block;

background: transparent;

background-size: cover;

background-position: center;

color: rgb(218, 218, 218);

padding-left: 20px;

padding-right: 20px;

padding-top: 10px;

padding-bottom: 10px;

margin: 10px;

}

section h1 {

text-align: left;

font-size: 40px;

font-weight: 900;

padding-left: 20px;

padding-right: 20px;

padding-top: 15px;

padding-bottom: 15px;

margin: 10px;

}

section p {

text-align: left;

font-size: 20px;

font-weight: 500;

line-height: 200%;

padding-left: 20px;

padding-right: 20px;

padding-top: 10px;

45

padding-bottom: 20px;

margin: 10px;

}

section p a {

color: rgb(136, 136, 244);

}

section div {

text-align: center;

padding-top: 5px;

padding-bottom: 5px;

}

section h2 {

text-align: left;

font-size: 20px;

font-weight: 500;

line-height: 200%;

padding-left: 20px;

padding-right: 20px;

padding-top: 10px;

margin: 10px;

}

section ul{

text-align: left;

font-size: 20px;

font-weight: 500;

padding-left: 30px;

padding-right: 20px;

padding-bottom: 20px;

margin: 10px;

}

section ul li{

text-align: left;

46

font-size: 20px;

font-weight: 500;

padding-left: 30px;

padding-right: 20px;

padding-top: 10px;

padding-bottom: 20px;

margin: 10px;

}

Though we have used RGB values for colors in this CSS, there are other ways in which color can be added as well.

Hex codes, CMYK, or generic names of colors like ‘red’ or ‘blue’ can be used to set color properties in CSS. A

simple web search can help find applications and tools that generate color codes for HTML and CSS. This tutorial

used a color picker from: h t t p s : / / h t m l c o l o r c o d e s . c o m / c o l o r - p i c k e r /

vi. Style the footer and elements under it:

footer {

background: transparent;

background-size: contain;

padding-top: 5px;

border-top: 1px solid rgb(238, 238, 238);

border-bottom: none;

}

footer h3 {

text-align: center;

font-size: 10px;

font-weight: light;

color: white;

padding-left: 20px;

padding-right: 20px;

https://htmlcolorcodes%20.com/color-picker/

47

padding-top: 5px;

padding-bottom: 1px;

}

footer p {

text-align: center;

font-size: 10px;

font-weight: light;

color: white;

padding-left: 20px;

padding-right: 20px;

padding-top: 5px;

padding-bottom: 1px;

}

vii. Finally, we use a media query command to make the website responsive i.e., automatically adjust to

different screen-sizes. Here we are telling the servers that styles apply to all media devices up to a max-

width of 768 pixels. Then we specify instructions for screens that are smaller than this size. All CSS within

the media query will only apply to screens that are smaller than 768 px.

@media all and (max-width : 768px) {

header {

overflow: hidden;

}

header nav {

margin: 0;

}

header nav ul {

float: none;

}

header h1{

48

font-size: 50px;

font-weight: bold;

text-align: center;

line-height: 16px;

color: black;

padding-bottom:35px;

padding-top: 25px;

}

section {

display: inline-block;

background: transparent;

background-size: cover;

background-position: center;

color: rgb(218, 218, 218);

padding-left: 10px;

padding-right: 10px;

padding-top: 5px;

padding-bottom: 5px;

margin: 5px;

}

section h1 {

text-align: left;

font-size: 25px;

font-weight: 900;

padding-left: 20px;

padding-right: 20px;

padding-top: 15px;

padding-bottom: 15px;

margin: 5px;

}

section p {

text-align: left;

font-size: 15px;

49

font-weight: 500;

line-height: 200%;

padding-left: 20px;

padding-right: 20px;

padding-top: 10px;

padding-bottom: 20px;

margin: 10px;

}

section p a {

color: rgb(136, 136, 244);

text-decoration: underline;

}

section div {

text-align: center;

padding-top: 5px;

padding-bottom: 5px;

}

section div img{

display: flex;

width: 375px;

height: auto;

}

section h2 {

text-align: left;

font-size: 15px;

font-weight: 500;

padding-left: 20px;

padding-right: 20px;

padding-top: 10px;

padding-bottom: 20px;

margin: 10px;

}

50

section ul{

text-align: left;

font-size: 15px;

font-weight: 500;

padding-left: 30px;

padding-right: 20px;

padding-top: 10px;

padding-bottom: 20px;

margin: 10px;

}

section ul li{

text-align: left;

font-size: 15px;

font-weight: 500;

padding-left: 30px;

padding-right: 20px;

padding-top: 10px;

padding-bottom: 20px;

margin: 10px;

}

}

</style>

Now, we have all the essential information so we can close the<style> tag and save. Your<style>element should

look like this:

<style>

*{

padding: 0;

margin: 0;

box-sizing:"border-box";

51

}

body {

background:black;

font-size: 22px;

line-height: 32px;

color: white;

margin: 0;

padding: 0;

word-wrap: break-word !important;

font-family: sans-serif;

}

header {

background: white;

padding-bottom: 20px;

}

header nav {

display: inline;

background: transparent;

background-size: cover;

background-position: center;

text-align: center;

padding-top: 5px;

padding-bottom: 10px;

}

header nav ul {

display: inline-flex;

list-style: none;

color: black;

font-weight: bold;

text-align: center;

}

52

header nav ul li {

width: 100px;

margin: 10px;

padding: 5px;

text-align: center;

}

header nav ul li a {

text-decoration: underline;

color: black;

display: inline-block;

padding: 5px;

}

header h1 {

font-size: 100px;

font-weight: bold;

text-align: center;

line-height: 32px;

color: black;

padding-bottom:75px;

padding-top: 50px;

}

section {

display: inline-block;

background: transparent;

background-size: cover;

background-position: center;

color: rgb(218, 218, 218);

padding-left: 20px;

padding-right: 20px;

padding-top: 10px;

padding-bottom: 10px;

margin: 10px;

53

}

section h1 {

text-align: left;

font-size: 40px;

font-weight: 900;

padding-left: 20px;

padding-right: 20px;

padding-top: 15px;

padding-bottom: 15px;

margin: 10px;

}

section p {

text-align: left;

font-size: 20px;

font-weight: 500;

line-height: 200%;

padding-left: 20px;

padding-right: 20px;

padding-top: 10px;

padding-bottom: 20px;

margin: 10px;

}

section p a {

color: rgb(136, 136, 244);

}

section div {

text-align: center;

padding-top: 5px;

padding-bottom: 5px;

}

section h2 {

54

text-align: left;

font-size: 20px;

font-weight: 500;

line-height: 200%;

padding-left: 20px;

padding-right: 20px;

padding-top: 10px;

margin: 10px;

}

section ul{

text-align: left;

font-size: 20px;

font-weight: 500;

padding-left: 30px;

padding-right: 20px;

padding-bottom: 20px;

margin: 10px;

}

section ul li{

text-align: left;

font-size: 20px;

font-weight: 500;

padding-left: 30px;

padding-right: 20px;

padding-top: 10px;

padding-bottom: 20px;

margin: 10px;

}

footer {

background: transparent;

background-size: contain;

padding-top: 5px;

border-top: 1px solid rgb(238, 238, 238);

55

border-bottom: none;

}

footer h3 {

text-align: center;

font-size: 10px;

font-weight: light;

color: white;

padding-left: 20px;

padding-right: 20px;

padding-top: 5px;

padding-bottom: 1px;

}

footer p {

text-align: center;

font-size: 10px;

font-weight: light;

color: white;

padding-left: 20px;

padding-right: 20px;

padding-top: 5px;

padding-bottom: 1px;

}

@media all and (max-width : 768px) {

header {

overflow: hidden;

}

header nav {

margin: 0;

}

header nav ul {

float: none;

}

56

header h1{

font-size: 50px;

font-weight: bold;

text-align: center;

line-height: 16px;

color: black;

padding-bottom:35px;

padding-top: 25px;

}

section {

display: inline-block;

background: transparent;

background-size: cover;

background-position: center;

color: rgb(218, 218, 218);

padding-left: 10px;

padding-right: 10px;

padding-top: 5px;

padding-bottom: 5px;

margin: 5px;

}

section h1 {

text-align: left;

font-size: 25px;

font-weight: 900;

padding-left: 20px;

padding-right: 20px;

padding-top: 15px;

padding-bottom: 15px;

margin: 5px;

}

section p {

text-align: left;

57

font-size: 15px;

font-weight: 500;

line-height: 200%;

padding-left: 20px;

padding-right: 20px;

padding-top: 10px;

padding-bottom: 20px;

margin: 10px;

}

section p a {

color: rgb(136, 136, 244);

text-decoration: underline;

}

section div {

text-align: center;

padding-top: 5px;

padding-bottom: 5px;

}

section div img{

display: flex;

width: 375px;

height: auto;

}

section h2 {

text-align: left;

font-size: 15px;

font-weight: 500;

padding-left: 20px;

padding-right: 20px;

padding-top: 10px;

padding-bottom: 20px;

margin: 10px;

58

}

section ul{

text-align: left;

font-size: 15px;

font-weight: 500;

padding-left: 30px;

padding-right: 20px;

padding-top: 10px;

padding-bottom: 20px;

margin: 10px;

}

section ul li{

text-align: left;

font-size: 15px;

font-weight: 500;

padding-left: 30px;

padding-right: 20px;

padding-top: 10px;

padding-bottom: 20px;

margin: 10px;

}

}

</style>

Refresh the browser to check changes on your homepage. If everything works, copy everything within the<style>

tags including the tags themselves and paste it under the<head> tag in all the .html pages you’ve created for the

website.

Image 7: Homepage of the website after adding CSS

PART III: HELLO WORLD!

61

GOING LIVE!

The final step involves moving this website from your computer to the world wide web. To do this you need to set

up an account on a webhosting service. We are using Neocities (https://neocities.org/) for this guide, but you are

welcome to explore others or use a preferred hosting service.

• Create an account on Neocities

• Neocities has a default index.html page for websites.

• Select all (cntrl+a) the contents on the index.html file you’ve been working on so far. Copy and

paste it on the Neocities’ default index.html page. Save!

• Upload additional webpages in the same folder on Neocities

But we are not done yet. We’ve moved the source code to this new folder on Neocities. This changes the file paths

for the images in the HTML. To make everything work correctly, upload all the images you’ve used on this

webpage on Neocities, making sure they are in the same folder as the index.html file. Save!

Finally, click on the view website option to see your website. Now you can copy the URL from the address bar and

share it with anyone who wants to see your website.

https://neocities.org/

Image 10: Final website

63

TROUBLESHOOTING

• Images will not show if the path and file name is incorrect in html. Check file names and path names to

ensure you have used them correctly.

• All open tags in HTML and CSS should have a corresponding closing tag.

• Check to ensure all nested elements have been closed.

• In CSS, ensure all attributes have a semi-colon (;) at the end.

• Coding programs like Visual Code editor, Sublime Text or Brackets can quickly point out missing closed

tags or other errors.

• If your page gives you a very specific error (like 404 or 501), search the error code to find out the nature of

error and then fix it.

• Refer to the resources section for advanced guides and tutorials.

PART IV: RESOURCES

65

TUTORIAL WEBSITE

The website developed as part of this tutorial can be accessed at: https://tutorial-html.neocities.org/

Right click on the website and select ‘View Page Source’ . Now you will be able to see the HTML and CSS for this

website, the one we’ve worked on through in this tutorial.

You can select all and copy-paste this page on a .txt file or your preferred programming tool. Simply change the

text, images, or any other content within different HTML tags to convert this into your own website. Then follow

the ‘going live’ instructions in this tutorial to publish your website. It is that easy!

Image 11: ‘View Page Source’ screen of the tutorial website

https://tutorial-html.neocities.org/%202

66

TECH RESOURCES

Sublime Text: https://www.sublimetext.com/3

Brackets: https://brackets.io/?lang=en

Visual Code Studio: https://code.visualstudio.com/

HTML+ CSS color picker: https://htmlcolorcodes.com/color-picker/

Solar powered Media zine: http://lowcarbonmethods.com/zine.html

How to guide: HTML website and source code: https://tutorial-html.neocities.org/

Neocities: https://neocities.org/

ttps://www.sublimetext.com/3
https://brackets.io/?lang=en
https://code.visualstudio.com/
https://htmlcolorcodes.com/color-picker/
http://lowcarbonmethods.com/zine.html
https://tutorial-html.neocities.org/
https://neocities.org/

67

HTML TUTORIALS

W3C HTML Tutorial: https://www.w3schools.com/html/default.asp

Structuring the Web with HTML: https://developer.mozilla.org/en-US/docs/Learn/HTML

Simple HTML Guide: https://www.simplehtmlguide.com/

HTML Syntax: https://www.w3schools.com/html/html5_syntax.asp

HTML Cheasheet: https://www.simplehtmlguide.com/cheatsheet.php

Learn HTML (free course): https://www.codecademy.com/learn/learn-html

HTML and CSS Tutorial - Create a Website for Beginners:

HTML for People:

https://youtu.be/kMT54MPz9oE?si=bfDnS4qcgR8b6TIA

https://www.htmlforpeople.com/

https://www.w3schools.com/html/default.asp
https://developer.mozilla.org/en-US/docs/Learn/HTML
https://www.simplehtmlguide.com/
https://www.w3schools.com/html/html5_syntax.asp
https://www.simplehtmlguide.com/cheatsheet.php
https://www.codecademy.com/learn/learn-html
https://youtu.be/kMT54MPz9oE?si=bfDnS4qcgR8b6TIA
https://www.htmlforpeople.com/

68

CSS TUTORIALS

W3C CSS Tutorial: https://www.w3schools.com/css/

CSS first steps overview: https://developer.mozilla.org/en-US/docs/Learn/CSS/First_steps

CSS Tutorials: https://developer.mozilla.org/en-US/docs/Web/CSS/Tutorials

Hell Yes! CSS!: https://wizardzines.com/zines/css/

Learn CSS (free course): https://www.codecademy.com/learn/learn-css

Vectors from Freepik

https://www.w3schools.com/css/
https://developer.mozilla.org/en-US/docs/Learn/CSS/First_steps
https://developer.mozilla.org/en-US/docs/Web/CSS/Tutorials
https://wizardzines.com/zines/css/
https://www.codecademy.com/learn/learn-css
https://www.freepik.com/

L A B G U I D E

	PREFACE
	PART I: HTML
	HTML: LANGUAGE OF THE WORLDWIDE WEB
	WHY SHOULD WE KNOW HOW TO USE HTML?
	HOW DO WE USE HTML?
	TECH REQUIREMENTS
	GETTING STARTED
	1. Create a folder
	2. Create a .html file
	3. Page structure
	4. Content
	5. Adding more pages

	PART II: CSS
	WHAT IS CSS?
	HOW TO USE CSS?
	Styling a page

	PART III: HELLO WORLD!
	GOING LIVE!
	TROUBLESHOOTING

	PART IV: RESOURCES
	TUTORIAL WEBSITE
	TECH RESOURCES
	HTML TUTORIALS
	CSS TUTORIALS

